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1 Introduction: Causal Inference under Interference

Figure 1: A visual rep-
resentation of network
treatment effects. A
vaccinated unit is not
infected due to the di-
rect effect (black ar-
row). An unvacci-
nated unit is also not
infected because of the
spillover effect (blue
arrow) from the vacci-
nated unit.

Causal inference aims to determine whether the association between two variables—
typically a treatment (A) and a response (Y )—is truly causal. Traditional methods
assume no interference, meaning one unit’s treatment does not affect others’ outcomes
[6]. This assumption, however, is often unrealistic. For example, a family member
receiving the COVID-19 vaccine may protect not only themselves but also other family
members from severe illness or death due to SARS-CoV-2 infection [18].

When interference is present, conventional causal inference methods cannot be di-
rectly applied. In the binary treatment case A ∈ {0, 1}, instead of just two potential
outcomes Y (0) and Y (1), there can be up to 2N potential outcomes {Y (a) : a ∈
{0, 1}N}, where N is the number of units in a network. A unit may be affected either
through direct treatment or through spillover effects from peers (Figure 1). Interference
is common in the real-world settings where units interact, and ignoring it can result in
misleading conclusions.

Recently, research on causal inference under interference has gained significant at-
tention. A key example is clustered (or partial) interference, where units are grouped
into clusters, with interference occurring only within the same cluster, but not across
different clusters [8]. Clusters may be defined by spatial or temporal proximity, such as
households [17] or villages [10] (see Figure 2). During my doctoral studies, I developed
semiparametric efficient methods to address challenges in clustered interference, with
key contributions summarized below.

2 Key Contributions
2.1 How Can We Efficiently Estimate Network Treatment Effects Across Diverse Counterfactual

Scenarios?

Figure 2: A visual representation of clustered
interference where interfering units are di-
vided into clusters (dotted circle).

Various causal estimands and inferential methods have been pro-
posed to assess treatment effects under clustered interference,
typically involving contrasts in average potential outcomes across
different counterfactual scenarios. For instance, we may com-
pare COVID-19 prevalence when 70% of citizens are vaccinated
versus 30%, or evaluate an individual’s risk based on their vac-
cination status while 50% of others are vaccinated. While some
works [14, 17, 22] consider network treatment effects under a
simple policy (Type B policy), where units independently select
treatment with the same probability, this policy lacks real-world
relevance because it overlooks potential heterogeneity in treat-
ment propensities across units. Alternatively, [3, 16] propose
estimands based on shifting propensity score distributions under
an assumed parametric model, but model mis-specification can
lead to ambiguous interpretation.

In my work [13], published in Journal of the American Statistical Association, we propose nonparametric
efficient estimation of network treatment effects applicable to any policy—not limited to Type B—without
relying on parametric models. Drawing from [9, 23], we derive the efficient influence function (EIF) of the
network treatment effect Ψ(w), given by φ(Oi) =

1
Ni

∑Ni

j=1 φij(Oi), where

φij(Oi) =
∑

ai∈{0,1}Ni

{
wj(ai) + ϕj(ai)

}
E
(
Yij |ai,Xi, Ni

)
+

wj(Ai)
{
Yij − E

(
Yij |Ai,Xi, Ni

)}
P(Ai|Xi, Ni)

−Ψ(w). (1)

Here, i indexes clusters, Ni is the size cluster i, and Oij = (Yij , Aij ,Xij) represent the outcome, treatment, and
covariates of individual j. Oi = (Yi,Ai,Xi) is the vector of data for cluster i, w = (w1, . . . , wNi

) is the weight
function defining the target network effect (e.g., either direct or spillover), and ϕ = (ϕ1, . . . , ϕNi

) is the EIF of
the weight function w for policy distribution estimation.

We further propose constructing an estimator based on this EIF, using flexible, data-adaptive regression
methods to avoid model mis-specification. The proposed estimator is consistent, asymptotically normal, multiply
robust, and achieves the nonparametric efficiency bound. Applying this method to the Senegal Demographic
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and Health Survey data [1], we find that access to private water sources or flushable toilets reduces the risk of
diarrhea in children and provides an additional protective spillover effect to neighboring households.

2.2 What if Individual-Level Data are Not Available? Utilizing Cluster-Level Summary Data
for Inference on Network Effects

Figure 3: Province
level bed net usage
in the Democratic Re-
public of the Congo
(top). Prevalence
of malaria in children
who do not use bed
nets (bottom).

Previous work on estimating network effects under clustered interference often assumes
that all individual-level data are available for estimation. However, in some cases,
individual-level data may not be collected due to budget constraints or privacy concerns,
leaving only cluster-level summary data (e.g., average outcomes or mean treatment
proportions). Moreover, many studies rely on inverse probability weighting (IPW)
using estimated cluster-level propensity scores [3, 16, 22], which are typically computed
by multiplying individual propensity scores (ranging from 0 to 1) within the same
cluster. For large clusters, this product tends to become extremely small, leading to
instability in IPW-based estimators.

In my work [10] (published in Statistics in Medicine), we propose utilizing the
g-formula to account for clustered interference while relying solely on cluster-level sum-
mary data. The g-formula offers a key advantage over IPW methods by avoiding the use
of potentially extreme IP weights, thereby providing greater numerical stability and by-
passing positivity violations. Furthermore, under mild assumptions, network treatment
effects are identifiable using cluster-level summary data, and the proposed estimator is
consistent and asymptotically normal, enabling valid inference on the target effects.

Analysis of the Democratic Republic of the Congo Demographic and Health Survey
data [15] using this method, which includes clusters of up to 400 individuals, suggests
that increasing the proportion of children who use bed nets reduces the prevalence of
malaria. Notably, we observe a protective spillover effect of bed net use on neighboring
children; Figure 3 demonstrates that malaria prevalence is inversely proportional to
bed net usage rate. The g-formula proved particularly effective in this analysis, as
IPW methods failed to converge due to extreme weights. Additionally, the g-formula
estimator relied only on cluster-level summary data—such as the number of infected
children and the number of bed nets per cluster.

2.3 What if the Outcome is Time-to-Event? Efficiently Accounting for Confounding, Interfer-
ence, and Censoring
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Figure 4: Estimated risk (×1000) of cholera over
time when unvaccinated (black solid line) or vac-
cinated (blue dashed line) by vaccine coverage
α ∈ {0.3, 0.45, 0.6}. Higher the vaccine coverage,
lower the risk of unvaccinated individuals.

In health science, a common interest is in estimating sur-
vival probabilities for time-to-event outcomes, such as a
cholera-free rate one year after vaccination. Particularly
in infectious disease contexts, methods must be developed
to account for potential interference among individuals.
While there is growing literature on clustered interference
[3, 14, 16, 17, 22] and causal inference from observational
data with censored time-to-event outcomes [7, 19, 20], only
a few works combine both challenges.

In my work [12] (under review at Journal of the Royal
Statistical Society Series B: Statistical Methodology), we
propose an estimator for survival functions under vari-
ous counterfactual treatment assignment scenarios that ad-
dresses both interference and right censoring. We develop
an efficient estimating equation for coarsened data based
on φij(Oi) in (1), here the outcome 1(Tij > τ) is the event-free indicator by time τ , given by

1

m
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where m is the number of clusters, Cij is the censoring time, Yij = min{Tij , Cij}, ∆ij = 1(Tij ≤ Cij), SC
ij is

the survival function for the censoring time, and MC
ij is a mean-zero martingale associated with the censoring

process.
Our proposed estimator based on (2) leverages cross-fitting, allowing for nonparametric estimation of nui-

sance functions, while ensuring the estimator remains within the bounds of the survival function, i.e., [0, 1].
The estimator is consistent, asymptotically normal, and multiply robust. Further, under mild conditions, it
weakly converges to a Gaussian process, as do standard survival analysis estimators. The application of this
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method to the Bangladesh cholera vaccine study [5] demonstrates that vaccination decreases the risk of cholera,
with unvaccinated individuals experiencing a protective spillover effect from those vaccinated (See Figure 4).
The direct effect of vaccination is more pronounced at lower coverage levels, while the spillover effect becomes
prominent at higher coverage levels.

3 Future Directions

My previous research has centered on developing flexible, nonparametric methods under interference, and there
remain many intriguing challenges within this framework. However, my interests extend beyond interference
settings. In the future, I aim to explore broad and innovative topics in causal inference, particularly those
that integrate nonparametric efficient estimation with machine learning techniques. Below are several research
directions I propose to pursue.

3.1 Optimal Individualized Treatment Rule under Interference

Learning how to optimally assign treatments to the population is a central problem in fields such as healthcare,
economics, and policy, with applications like referring patients for surgery, targeting customers with offers, or
assigning students to educational programs. While there is extensive research on developing optimal individ-
ualized treatment rules (ITRs) [2, 11, 28], less attention has been given to cases where interference is present,
which can lead to suboptimal or detrimental outcomes when ignored.

Building on recent advancements [27], I aim to estimate the optimal ITR under clustered interference. In
particular, I will focus on maximizing survival probability by time τ under resource constraints:

max
π∈Π

E
{

1
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∑Ni

j=1 1

(
Tij

(
{π(Xij)}Ni

j=1

)
> τ

)}
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j=1 π(Xij)
}
≤ λ

where λ ∈ [0, 1] represents the proportion of available treatment, and Tij

(
{π(Xij)}Ni

j=1

)
is the potential survival

time of unit j in cluster i if the treatment allocation follows the ITR π : Xij 7→ {0, 1}. This problem has
significant real-world relevance, e.g., for maximizing cholera-free rates within a year, but with limited vaccines.

Given the complexity of modeling interference I propose an estimation method that avoids explicit modeling
while accounting for potential censoring. The optimal rule will be estimated using integer programming, with
theoretical guarantees on performance established via excess risk and minimax regret bounds. This framework
may offer policymakers practical tools for making optimal decisions under interference, resource constraints,
and censored outcomes.

3.2 Combining Causal Inference with Machine Learning

In the coming years, I plan to integrate causal inference methods with machine learning to develop robust
tools for estimating causal effects in complex settings. Machine learning excels in handling high-dimensional
data, nonlinearity, and intricate interactions, making it a valuable complement to traditional causal inference
techniques. Recent advancements, including causal forests [25], targeted maximum likelihood estimation [24],
and deep learning approaches such as adversarial learning [26] and causal representation learning [21], demon-
strate promising capability to address confounding, heterogeneity in treatment effects, and high-dimensional
covariates. I aim to leverage these innovations within double/debiased machine learning frameworks [4] for non-
parametric nuisance parameter estimation, enabling valid inference despite complex data structures. Through
this research, I seek to enhance causal inference methodologies, yielding more reliable and interpretable results
across diverse fields such as healthcare and economics.
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