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Interference

® Interference: Treatment of one individual may affect another’s outcome

e Examples: economics, education, infectious diseases, political science, social
networks, spatial analyses, ...

® Partial or clustered interference: Individuals may be partitioned into groups
(clusters) s.t. there is no interference between individuals in different groups
allowing for, but not assuming the existence of, interference within clusters

® Goal: Draw inference about treatment effects that allow for / quantify
interference within clusters, if present

OCIS, 26 Sep 2023



Estimands

Interesting aspect of causal inference with interference; many choices

Policy @: counterfactual setting where conditional distribution of cluster’s
treatment A given cluster’s covariates X is Q

1(Q) expected potential outcome (PO) under policy Q
1a(Q) expected PO when individual receives a under policy Q for a=0,1
Effects defined by contrasts such as indirect / spillover effect 110( Q) — po(Q’)
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Two-stage randomization

e What would be ideal randomized experiment when partial /cluster
interference might be present?

e Two-stage randomization (Hayes et al. 2000, Longini et al. 2002, Borm et
al. 2005, Sinclair et al. 2012, Ichino and Schindeln 2012, Basse and Feller
2017, ...)

1. Groups to policies (allocation strategies), {Qo, Q1}
2. Given 1, randomize individuals to treatment/control, {0,1}
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Cash Transfer Program (Baird et al. 2014)

e Groups: enumerations areas (EAs) in Zomba district of Malawi
® Individuals: never married females ages 13-22

® Assignment mechanism

1. Randomized EAs to 0%, 33%, 66% or 100% saturation
2. Randomized participants to cash transfer conditional on EA assignment from
step 1

OCIS, 26 Sep 2023



Two-staged Randomized Experiments

e Inference in two-staged randomized studies: H. and Halloran (2008);
Tchetgen Tchetgen and VanderWeele (2012); Liu and H. (2014); Baird et
al. (2014); Rigdon and H. (2015); Basse and Feller (2018); and many others

® No interference and independence btwn clusters; no confounding
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Partial Interference and Observational Data

® Methods for observational studies to allow partial interference: assume (i)
random sample from super-population of groups and (ii) no unmeasured
confounders

® Tchetgen Tchetgen and VanderWeele (2012), Perez-Heydrich et al. (2014)
and Liu et al. (2016) consider IPW estimators, with weights based on
inverse of group-level propensity score

® Liu et al. (2019) DR estimators; Park and Kang (2022) sp efficient
estimators

e Chakladar et al. (2022) right censoring, inverse probability of censoring
weights
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Policy-relevant Estimands

® These methods generally target same estimands as two-stage randomized
experiments, i.e., scenarios where individuals independently select treatment
w/ same probability, aka, type B policy

® |n observational setting, other counterfactual policies may be more relevant,
e.g., if interference within clusters, might expect within cluster treatment
selection dependence
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Policy-relevant Estimands

® Papadogeorgou et al (Biometrics 2019) and Barkley et al (Ann of App Stat
2020) estimands shift/modify treatment distribution: (i) permits treatment
selection dependence within clusters, (ii) preserves ranking of individuals
within clusters by probability of treatment, (iii) based on assumed
parametric model of A | X

® | ee, Zeng, Hudgens, 2023. Efficient Nonparametric Estimation of
Stochastic Policy Effects with Clustered Interference. arXiv
General class of estimands that do not require parametric modeling of A | X
Nonparametric sample splitting estimators, flexible data-adaptive estimation
of nuisance functions, CAN at the usual parametric rate
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Definitions

Observed data
e m clusters, N; individuals in cluster i € {1,...,m}

® Unit j in cluster i,
Y; € R: outcome, A; € {0,1}: treatment, X;; € RP: covariates

e O, =(Y;,A;,X;, N;): observed data for cluster i
® A(N;) = {0,1}M: set of all length N; binary vectors

Potential outcome
® Yj(a;): potential outcome for unit j in cluster i when individuals in the
cluster receives treatment assignment according to a; € A(N;)

° Yij(ai) = Kj(aij; ai(—j)), Ai(—j) = (3i17 s i1 i1 - aiN,-)
* No interference: Yj(aj, ai—) = Yj(a;, aj_j)

OCIS, 26 Sep 2023

10



Treatment allocation policy

® Counterfactual scenario that a cluster of size N; with cluster-level covariate
X receives treatment a; € A(N;) with probability Q(a;|X;, N;).
Q(:|X;, N;): probability dist'n on A(N;)

® Deterministic policy

Qui@i|X;, Nj) =TT, 1(ay = 1)

Type B policy (Tchetgen Tchetgen & VanderWeele 2012)

Qs(a;|Xi, Nj; ) = HN’1 (1 — )t~

j=

GLMM shift policy (Papadogeorgou et al. 2019, Barkley et al. 2020)

PAIX;, Ni) = [ TIY (g (X[ B+ u)}{1 — g(X] 5 + u)} A dF (u)
Qauan(@i|X;, Nii7) = [ TIL {g (X7 + )} {1 — g(Xjy + u) i dF (u)
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e CIPS policy (Kennedy 2019, Lee et al. 2023)
Qaps(a/"Xh N;; 5) = HJI'V:il(WU,zS)aU(l - 7Tij,6)1_a'j

> mij = P(Aj = 1|X;, N;) propensity score
> s = 0(Xi, Ni)mij /{6(X;i, Ni)mij + 1 — mj;} shifted propensity score

> §(X;, N;) user-specified known function
e.g., (5(X,’, N,') = Jp, 5(X,’, N,') = (50(1 + 1/N,')

> Shifting the propensity score distribution s.t

Tij, 6 / ij — §5(X:. N:
1—mjjs/ 1—mj (Xi, ;)

> Risk of COVID19 when the odds of vaccination were 2 times the observed
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® TPB policy (Lee et al. 2023)
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P(a;|X;, N;)
D _ars, P(aj X, ;)

QTPB(ai|Xi7 NI;P) = IL(5i > p)

> a = N 8y,
> P(aj|X;, N;) = P(A; = a;|X;, N;) observed joint probability of treatment

> Counterfactual scenario that the proportion of treated individuals in each
cluster is at least p € [0,1]

> Risk of COVID19 when at least 50% of individuals in each city are vaccinated
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Estimands

® Expected average potential outcome under policy @

(@) = E{ NS, 5 aquy V@) QailXi, V) §

® Expected average potential outcome when treated under policy Q

(@) = E{ N7 0 0 camn YilL i) Qi Xi, )}

> Q(a,-(_j)|X,-, N,) = Q(]_, a,-(_j)]X,-, N,) + Q(O,a,-(_j)\X,-, N,) probability of all
units in cluster i other than j receiving treatment a;_;) under policy Q.

> No interference: Yj(1,a;_j)) = Yji(l) = u1(Q) = E{Ni_l Zsz’l Y,-J-(l)}

® Expected average potential outcome when untreated under policy @

1o(Q) = { Y e yeami— Yi(0,ai-) Q(aiy X, N,-)}

OCIS, 26 Sep 2023
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Estimands: Causal effects

e DE(Q) = u1(Q) — po(Q): effect of treatment under policy Q.
> Vaccine effect on COVID19 when 50% of neighbors vaccinated
* OE(Q,Q") = u(Q) — u(Q'): compares two policies @ and Q' overall
> Difference between overall COVID19 risk when 50% versus 30% of neighbors
vaccinated
® SE1(Q, Q') = u1(Q) — u1(Q'): average potential outcomes when treated
under policy Q vs. @’
> Difference between a vaccinated individual's risk of COVID19 when 50%
versus 30% of neighbors vaccinated
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Assumptions and ldentifiability

Al) Consistency: Yjj =, c ;) Yi(ai)L(A; = a;)

A2) Conditional Exchangeability: Yj(a;) AL A;|X;, N; for all a; € A(N;)
Positivity: P(A; = 1|X;, N;) € (¢,1 — ¢) for some ¢ € (0,1)

A4) Finite moments: ‘E(YlﬂA;,X,-, N,-)| < C for all p <4 and some C < c©

(
(A2)
(A3)
(A4)
(A5) Finite cluster size: P(N; < npax) = 1 for some npa € N
Lemma (ldentifiability of Causal Estimands)

V(W) = B { S caqm W@ Xi N)TE(Y|A, = 2. X )|
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Nonparametric EIF
Theorem

Assume the EIF of w(a,x, n) is @;(ax n) (0:)

={1 ( ;= x, N; = n)/dP(x, n)}
&(A;, X;, N;; a) for fixed (a, x, n) € A(n) x X(n) x

. Then, the EIF of V(w) is
90*(01) :ZafGA(NI) { (aHXH N) + ¢(A17XH N" a; } E( A o a”X" N)
+ P(AX, N) T w (A X, N) T Y —E(YG AL X N b — W(w)
Corollary

SO:L(Q)(O ) = a cA(N, {Q aI|XIJ )+ (bQ(Ai?Xl" N,-;a,-)}]E(V,"A; - ai’xi7 N')

+((‘|%{Y E(Yi|A:, X, Nj)} — 1(Q)
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Nuisance functions

Nuisance functions n = (G, H, w, ¢):

1. Cluster outcome regression G(a;,x;, n;) = IE(Y,-|A,- —a;, Xi=x;,N; = n,-)
2. Cluster treatment probability H(a;, x;, n;) = IP’(A,- =a;|X; =x;,N; = n,-)
3. Weight function w(a;, x;, n;)

4. EIF of the weight function ¢(al, x;, n;; a;)

Parametric: GLMM

Data-adaptive: Mixed effect ML (Ngufor et al. 2019), Smoothed kernel
regression for dependent data (Park & Kang 2022), etc.

OCIS, 26 Sep 2023
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Nuisance functions

If Yy L Yi|A;, X, N; and A L Ai|X;, N; (not necessarily marginal indep.),
1. Individual outcome regression
g(j,a;, x;, n;) :]E(Y,-J-|A,- =a, X, =x;,N; = )
=E(Y;lAj = aj, Ai—jy = Bi(—), Xy = x;) = &"(a5,3i(), Xj)
2. Individual propensity score

7(j, xi, nj) =P(A; = 1|X; = x;, N; = n;)
=P(Aj = 1|X; = xj) =: 7 (x;)

Parametric: GLM

Data-adaptive: SVM, RF, SuperLearner (van der Laan et al. 2007), etc.
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Sample Splitting Estimator

Evaluate
’ Fit myt ) (p(O(l) 7
g J
o ACD
H 7 D Average SD

O, Pw) ¢w)

o® A2

o,é,f) gc?
: 7(=2) ]
T[ —_— Al—
\ Fit my’ Z"’(Oz(z): 1)
Evaluate
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Sample Splitting Estimator

V(w) =250 255 9(05779)
7(w) = & S { & sk (057~ U(w)

> . CA(N)) (S ¥)(0;,a;) can be computationally intensive. Approximate this
by 2N Zq:1 D(0;,a'?)/r where @l (g =1,...,r) is randomly sampled
from A(N;).

® Specific sample split introduces finite sample variability. Repeat sample
splitting S times and then take the median of S estimators to get a
split-robust estimator (Chernozhukov et al. 2018).

OCIS, 26 Sep 2023
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Theoretical results

T(w) —W(w) = o 3" [(B — B)e(0;m) + (B~ P){(0:Y) — ¢(0:m)}

k=1

+P{e(0:7) = (0 m)}

o (P5 —P)p(0;n) ~ N(0,0%(w)): CLT
o (Pl = P){0(0:71) = (0:m)} = Os (|[(0: 7)) = (0: m)||/m/?)

o P{o(0; M) — p(0;m)} = r2 4 rerm + rery
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Conditions

(B1) Bounded H and H=h: H(a,x,n) € (¢,1 — ¢) and ﬁ(’k)(a x,n) € (¢,1—¢)
(B2) Bounded G and G(~): ||G(a,x,n)|, < C and ||GCF(a,x,n)||, < C

(B3) Bounded ¢ and ¢{~): ||¢ a’,x,ma)|, < Cand [[¢C¥(a’,x,na), < C

(B4) Bounded w and w(=%): ||w(a,x,n)||, < C and ||w(=¥(a,x,n)|, < C

(B5) Convergence rate of H(=5): HzaeA(N) |(ﬁ(‘k) — H)(a,X, N) |H = Op(rn)
(B6) Convergence rate of G(~X): HZ CA(N H(é(_ )~ G)(a, X, N)||, HL ® = Op(rc)
(B7) Convergence rate of ¢(—*) HZaGA [(65) — ¢) (A, X, N;a ), H = Op(ry)

(B8) Second order convergence rate of w(=k):

(W — w)(@, X, N) + Xy amy @9, X, N;a)H(a', X, N) = Op(r2)

2

||Za€A(N)

L>(P)
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Theoretical results

Theorem

Under the mild conditions s.t nuisance function estimators have convergence rate
of m=Y*, then /m{V(w) — W(w)}/5(w) > N(0,1). Also, 52(w) 5 o2(w),
where o*(w) = E |{¢*(0; n)}ﬁ is the nonparametric efficiency bound of W(w).

Thus, the proposed estimators are consistent, asymptotically normal, and
nonparametric efficient.
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Examples

Asvmptotic Consistent

Policy  Consistency ympte Variance Notes
Normality :

Estimator
Type B ¢~ o(1) or re-ry =o(m?) rg=ry=o0(1) ¢ =0, DR
ry = o(1)
B ry = o(m™1/%), o Individual level
CIPS = o(1) rr = rg = o(1) nuisance functions

Ie-lg = o(m~1/?)

ry = o(m~Y/%),

A iy == o)

TPB ry = o(1)
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Examples

Theorem

Consider the collection of type B policies indexed by o € A = [oy, o], where
0<a<a, <1l Then, /m{fis(-) — ps(-)} ~ G(:) in £>°(A) as m — oo,
where G(-) is a mean zero Gaussian process with covariance E{G(a)G(a')}
= E{¢}(0)(0)© 0 (O)} where ¢ ,(0) is the EIF of jis(c).

Theorem

Consider the collection of CIPS policies with constant 6(X;, N;) = &y indexed by
do € D = [0),8,], where 0 < 0; < 0, < 0o. Then, \/m{Jfices(-) — taws(-)} ~ G(+)
in (>°(D) as m — oo, where G(-) is a mean zero Gaussian process with
covariance E{G(d)G(d})} = E{@ZCIPS((SO)(O)anCIPS(%)(O)} where @7, (5)(0) is
the EIF of icps(d0).
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Simulations

D = 1000 simulations, each consisted of m = 500 clusters
iid

N; % Unif{5,6,...,20},i=1,...,m

Ci ~ N(0,1): one cluster-level covariate

Xij1 ~ N(0,1), Xj» ~ Bernoulli(0.5): individual-level covariates

Ajj ~ Bernoulli(7j;): treatment status, Yj ~ Bernoulli(gj;): outcome
w5 = expit(0.1+ 0. 2|X,,1| +0.2|X;1| Xij2 + 0.11(C; > 0))

8ij = expit(3 2A i — I(—j) 1.5|X,'j1| + 2X,'J'2 - 3|XU1|XU2 — 2]1(C,' > 0))
CIPS policy with constant §(X;, N;) = dp € {0.5,1,2}

Sample splitting with K =2, r =100, S =1

Nuisance functions estimation

> Nonparametric: SuperLearner (logistic reg, RF, GAM, single-layer NN)
> Parametric: logistic reg
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Simulations

Table 1: Simulation results for nonparametric and parametric sample splitting
estimators for CIPS policy with constant §

Nonparametric Parametric
Estimand  Truth Bias RMSE ASE ESE Cov % Bias RMSE ASE ESE Cov%

1(2) 0.300 -0.003 0.013 0.013 0.013 94.9% -0.010 0.017 0.013 0.014 87.1%
11(2) 0.224 -0.004 0.014 0.014 0.014 93.7% -0.017 0.022 0.014 0.015 75.9%
1o(2) 0.507 0.003 0.018 0.017 0.017 94.5% 0.025 0.031 0.019 0.019 75.6%
DE(2) -0.283 -0.007 0.019 0.019 0.018 94.2% -0.042 0.046 0.021 0.020 45.6%
SEi(2,1) -0.018 -0.002 0.010 0.010 0.010 94.3% -0.004 0.012 0.011 0.012 93.4%
SEy(2,1) -0.022 -0.002 0.012 0.012 0.012 94.4% -0.006 0.015 0.014 0.014 92.5%
OE(2,1) -0.063 -0.003 0.009 0.009 0.009 93.9% -0.010 0.015 0.010 0.010 77.7%
TE(2,1) -0.306 -0.009 0.017 0.015 0.015 92.1% -0.047 0.050 0.017 0.017 22.7%

RMSE: root mean squared error, ASE: average standard error estimates, ESE:
standard deviation of estimates, Cov %: 95% Cl coverage, RMSE Ratio: RMSE ratio
of nonparametric and parametric estimators
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Application to Senegal Demographic and Health Survey

® Whether water, sanitation, and hygiene (WASH) facilities decrease diarrhea

incidence among children under clustered interference? (Benjamin-Chung et al.
2018)

® How does diarrhea incidence change if the odds of having WASH facility change?
[CIPS policy]

® How does diarrhea incidence change if at least 50% of households have WASH
facility? [TPB policy]

Cluster: Census block (i =1,...,1074)

Unit: Household (j = 2,...,12)

Yij = L(All children diarrhea-free)

Ajj = 1(WASH facility)

Xij = Demographic, Socioeconomic status

v VvV VvV VvV VvV V

Sample splitting estimator with Super Learner estimator
including penalized logistic regression, spline regression,
GAM, GBM, RF, Neural net

OCIS, 26 Sep 2023

29



Application to Senegal DHS (cont'd)

HC|PS(50) pC\PS,l(éﬂ) HC|PS,0(50)
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Application to Senegal DHS (cont'd)

prea(p) pree1(0) Hreso(p)
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Discussion

® Nonparametric methods are developed which can be used to draw inference
about treatment effects in the presence of clustered interference, can be
applied to any treatment allocation policy, allowing for units’ propensity to
vary by their covariates and are not based on parametric model

® Proposed nonparametric efficient sample splitting estimators exploit a
variety of data-adaptive methods, and therefore are robust to model
mis-specification compared to parametric estimators

® Application to the Senegal DHS data suggested that having a private water
source or flushable toilet decreases the risk of diarrhea among children, and
that children from WASH households may receive an additional protective
spillover effect from neighboring WASH households

OCIS, 26 Sep 2023
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